Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 333
1.
Schizophr Res ; 267: 230-238, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579432

BACKGROUND: Sleep problems are common and related to a worse quality of life in patients with schizophrenia. Almost all patients with schizophrenia use antipsychotic medications, which usually increase sleep. Still, the differences in subjective sleep outcomes between different antipsychotic medications are not entirely clear. METHODS: This study assessed 5466 patients with schizophrenia and is part of the nationwide Finnish SUPER study. We examined how the five most common antipsychotic medications (clozapine, olanzapine, quetiapine, aripiprazole, and risperidone) associate with questionnaire-based sleep problems in logistic regression analyses, including head-to-head analyses between different antipsychotic medications. The sleep problems were difficulties initiating sleep, early morning awakenings, fatigue, poor sleep quality, short (≤6 h) and long sleep duration (≥10 h). RESULTS: The average number of antipsychotic medications was 1.59 per patient. Clozapine was associated with long sleep duration (49.0 % of clozapine users vs 30.2 % of other patients, OR = 2.05, 95 % CI 1.83-2.30, p < .001). Olanzapine and risperidone were in head-to-head analyses associated with less sleep problems than patients using aripiprazole, quetiapine, or no antipsychotic medication. Aripiprazole and quetiapine were associated with more insomnia symptoms and poorer sleep quality. Patients without antipsychotic medications (N = 159) had poorer sleep quality than patients with antipsychotic use, and short sleep duration was common (21.5 % of patients using antipsychotics vs 7.8 % of patients using antipsychotics, OR = 2.97, 95 % CI 1.98-4.44, p < .001). CONCLUSIONS: Prevalence of sleep problems is markedly related to the antipsychotic medication the patient uses. These findings underline the importance of considering and assessing sleep problems when treating schizophrenia patients with antipsychotics.

2.
Blood ; 2024 03 18.
Article En | MEDLINE | ID: mdl-38498041

The Factor V Leiden (FVL, rs6025) and prothrombin G20210A (PTGM, rs1799963) polymorphisms are two of the most well-studied genetic risk factors for venous thromboembolism (VTE). However, double heterozygosity (DH) for FVL and PTGM remains poorly understood, with prior studies in marked disagreement about the thrombosis risk conferred by the DH genotype. Utilizing multi-dimensional data from the UK Biobank (UKB) and the FinnGen biorepositories, we evaluated the clinical impact of DH carrier status across 937,939 individuals. We found that 662 participants (0.07%) were DH carriers. After adjustment for age, sex, and ancestry, DH individuals experienced a markedly elevated risk of VTE compared to wild-type individuals (OR=5.24, 95% CI: 4.01 - 6.84; P=4.8 x 10-34), which approximated the risk conferred by FVL homozygosity. A secondary analysis restricted to UKB participants (N=445,144) found that effect size estimates for the DH genotype remained largely unchanged (OR=4.53, 95% CI: 3.42 - 5.90; P<1 x 10-16) after adjustment for commonly cited VTE risk factors such as body mass index, blood type, and markers of inflammation. By contrast, the DH genotype was not associated with a significantly higher risk of any arterial thrombosis phenotype, including stroke, myocardial infarction, and peripheral artery disease. In summary, we leveraged population-scale genomic datasets to conduct the largest study to date of the DH genotype and were able to establish far more precise effect size estimates than previously possible. Our findings indicate that the DH genotype may occur as frequently as FVL homozygosity and confers a similarly increased risk of VTE.

3.
Mol Psychiatry ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38556557

Genetic factors contribute to the susceptibility of psychotic disorders, but less is known how they affect psychotic disease-course development. Utilizing polygenic scores (PGSs) in combination with longitudinal healthcare data with decades of follow-up we investigated the contributing genetics to psychotic disease-course severity and diagnostic shifts in the SUPER-Finland study, encompassing 10 403 genotyped individuals with a psychotic disorder. To longitudinally track the study participants' past disease-course severity, we created a psychiatric hospitalization burden metric using the full-coverage and nation-wide Finnish in-hospital registry (data from 1969 and onwards). Using a hierarchical model, ranking the psychotic diagnoses according to clinical severity, we show that high schizophrenia PGS (SZ-PGS) was associated with progression from lower ranked psychotic disorders to schizophrenia (OR = 1.32 [1.23-1.43], p = 1.26e-12). This development manifested already at psychotic illness onset as a higher psychiatric hospitalization burden, the proxy for disease-course severity. In schizophrenia (n = 5 479), both a high SZ-PGS and a low educational attainment PGS (EA-PGS) were associated with increased psychiatric hospitalization burden (p = 1.00e-04 and p = 4.53e-10). The SZ-PGS and the EA-PGS associated with distinct patterns of hospital usage. In individuals with high SZ-PGS, the increased hospitalization burden was composed of longer individual hospital stays, while low EA-PGS associated with shorter but more frequent hospital visits. The negative effect of a low EA-PGS was found to be partly mediated via substance use disorder, a major risk factor for hospitalizations. In conclusion, we show that high SZ-PGS and low EA-PGS both impacted psychotic disease-course development negatively but resulted in different disease-course trajectories.

4.
BMC Genomics ; 25(1): 256, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454350

BACKGROUND: Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS: We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS: Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.


Genome-Wide Association Study , Heart Defects, Congenital , Humans , Infant, Newborn , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Risk Factors , Databases, Genetic
5.
JAMA Cardiol ; 9(5): 418-427, 2024 May 01.
Article En | MEDLINE | ID: mdl-38477908

Importance: Epicardial and pericardial adipose tissue (EPAT) has been associated with cardiovascular diseases such as atrial fibrillation or flutter (AF) and coronary artery disease (CAD), but studies have been limited in sample size or drawn from selected populations. It has been suggested that the association between EPAT and cardiovascular disease could be mediated by local or paracrine effects. Objective: To evaluate the association of EPAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of EPAT in a large population cohort. Design, Setting, and Participants: A deep learning model was trained to quantify EPAT area from 4-chamber magnetic resonance images using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. Prospective associations were additionally controlled for abdominal visceral adipose tissue (VAT) volumes. A genome-wide association study was performed, and a polygenic score (PGS) for EPAT was examined in independent FinnGen cohort study participants. Data analyses were conducted from March 2022 to December 2023. Exposures: The primary exposures were magnetic resonance imaging-derived continuous measurements of epicardial and pericardial adipose tissue area and visceral adipose tissue volume. Main Outcomes and Measures: Prevalent and incident CAD, AF, heart failure (HF), stroke, and type 2 diabetes (T2D). Results: After exclusions, this study included 44 475 participants (mean [SD] age, 64.1 [7.7] years; 22 972 female [51.7%]) from the UK Biobank. Cross-sectional and prospective cardiovascular disease associations were evaluated for a mean (SD) of 3.2 (1.5) years of follow-up. Prospective associations were additionally controlled for abdominal VAT volumes for 38 527 participants. A PGS for EPAT was examined in 453 733 independent FinnGen cohort study participants. EPAT was positively associated with male sex (ß = +0.78 SD in EPAT; P < 3 × 10-324), age (Pearson r = 0.15; P = 9.3 × 10-229), body mass index (Pearson r = 0.47; P < 3 × 10-324), and VAT (Pearson r = 0.72; P < 3 × 10-324). EPAT was more elevated in prevalent HF (ß = +0.46 SD units) and T2D (ß = +0.56) than in CAD (ß = +0.23) or AF (ß = +0.18). EPAT was associated with incident HF (hazard ratio [HR], 1.29 per +1 SD in EPAT; 95% CI, 1.17-1.43), T2D (HR, 1.63; 95% CI, 1.51-1.76), and CAD (HR, 1.19; 95% CI, 1.11-1.28). However, the associations were no longer significant when controlling for VAT. Seven genetic loci were identified for EPAT, implicating transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2, and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The EPAT PGS was associated with T2D (odds ratio [OR], 1.06; 95% CI, 1.05-1.07; P =3.6 × 10-44), HF (OR, 1.05; 95% CI, 1.04-1.06; P =4.8 × 10-15), CAD (OR, 1.04; 95% CI, 1.03-1.05; P =1.4 × 10-17), AF (OR, 1.04; 95% CI, 1.03-1.06; P =7.6 × 10-12), and stroke in FinnGen (OR, 1.02; 95% CI, 1.01-1.03; P =3.5 × 10-3) per 1 SD in PGS. Conclusions and Relevance: Results of this cohort study suggest that epicardial and pericardial adiposity was associated with incident cardiovascular diseases, but this may largely reflect a metabolically unhealthy adiposity phenotype similar to abdominal visceral adiposity.


Adiposity , Cardiovascular Diseases , Pericardium , Humans , Pericardium/diagnostic imaging , Female , Male , Middle Aged , Adiposity/genetics , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Cross-Sectional Studies , Aged , Adipose Tissue/diagnostic imaging , Prospective Studies , Genome-Wide Association Study , Magnetic Resonance Imaging , Intra-Abdominal Fat/diagnostic imaging
6.
Eur J Hum Genet ; 32(5): 576-583, 2024 May.
Article En | MEDLINE | ID: mdl-38467730

Intellectual disability (ID) is a common disorder, yet there is a wide spectrum of impairment from mild to profoundly affected individuals. Mild ID is seen as the low extreme of the general distribution of intelligence, while severe ID is often seen as a monogenic disorder caused by rare, pathogenic, highly penetrant variants. To investigate the genetic factors influencing mild and severe ID, we evaluated rare and common variation in the Northern Finland Intellectual Disability cohort (n = 1096 ID patients), a cohort with a high percentage of mild ID (n = 550) and from a population bottleneck enriched in rare, damaging variation. Despite this enrichment, we found only a small percentage of ID was due to recessive Finnish-enriched variants (0.5%). A larger proportion was linked to dominant variation, with a significant burden of rare, damaging variation in both mild and severe ID. This rare variant burden was enriched in more severe ID (p = 2.4e-4), patients without a relative with ID (p = 4.76e-4), and in those with features associated with monogenic disorders. We also found a significant burden of common variants associated with decreased cognitive function, with no difference between mild and more severe ID. When we included common and rare variants in a joint model, the rare and common variants had additive effects in both mild and severe ID. A multimodel inference approach also found that common and rare variants together best explained ID status (ΔAIC = 16.8, ΔBIC = 10.2). Overall, we report evidence for the additivity of rare and common variant burden throughout the spectrum of intellectual disability.


Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Female , Finland , Adult , Genetic Variation
7.
Ann Am Thorac Soc ; 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38330144

RATIONALE: While patients with obstructive sleep apnea (OSA) have a higher risk for COVID-19 hospitalization, the causal relationship has remained unexplored. OBJECTIVES: To understand the causal relationship between OSA and COVID-19 leveraging data from vaccination and electronic health records, genetic risk factors from genome-wide association studies (GWAS) and Mendelian randomization. METHODS: We elucidated genetic risk factors for OSA using FinnGen (N total = 377,277 individuals) performing genome-wide association. We used the associated variants as instruments for univariate and multivariate Mendelian randomization (MR) analyses and computed absolute risk reduction (ARR) against COVID-19 hospitalization with or without vaccination. MEASUREMENTS AND MAIN RESULTS: We identified 9 novel loci for OSA and replicated our findings in the Million Veterans Program. Furthermore, MR analysis showed that OSA was a causal risk factor for severe COVID-19 (P=9.41x10-4). Probabilistic modelling showed that the strongest genetic risk factor for OSA at the FTO locus reflected a signal of higher BMI, whereas BMI independent association was seen with the earlier reported SLC9A4 locus and a MECOM locus which is a transcriptional regulator with 210-fold enrichment in the Finnish population. Similarly, Multivariate MR (MVMR) analysis showed that the causality for severe COVID-19 was driven by body mass index (BMI), (P MVMR = 5.97x10-6, beta=0.47). Finally, vaccination reduced the risk for COVID-19 hospitalization more in the OSA patients than in the non-OSA controls: ARR = 13.3% vs. ARR = 6.3% in the OSA vs. non-OSA population. CONCLUSIONS: Our analysis identified novel genetic risk factors for OSA and showed that OSA is a causal risk factor for severe COVID-19. The effect is predominantly explained by higher BMI and suggests BMI-dependent effects at the level of individual variants and at the level of comorbid causality.

8.
Nat Genet ; 56(3): 377-382, 2024 Mar.
Article En | MEDLINE | ID: mdl-38182742

Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting more than 16 million pregnancies annually worldwide1,2. GDM is related to an increased lifetime risk of type 2 diabetes (T2D)1-3, with over a third of women developing T2D within 15 years of their GDM diagnosis. The diseases are hypothesized to share a genetic predisposition1-7, but few studies have sought to uncover the genetic underpinnings of GDM. Most studies have evaluated the impact of T2D loci only8-10, and the three prior genome-wide association studies of GDM11-13 have identified only five loci, limiting the power to assess to what extent variants or biological pathways are specific to GDM. We conducted the largest genome-wide association study of GDM to date in 12,332 cases and 131,109 parous female controls in the FinnGen study and identified 13 GDM-associated loci, including nine new loci. Genetic features distinct from T2D were identified both at the locus and genomic scale. Our results suggest that the genetics of GDM risk falls into the following two distinct categories: one part conventional T2D polygenic risk and one part predominantly influencing mechanisms disrupted in pregnancy. Loci with GDM-predominant effects map to genes related to islet cells, central glucose homeostasis, steroidogenesis and placental expression.


Diabetes Mellitus, Type 2 , Diabetes, Gestational , Islets of Langerhans , Pregnancy , Female , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes, Gestational/genetics , Genome-Wide Association Study , Placenta
9.
Lab Invest ; 104(4): 100325, 2024 Apr.
Article En | MEDLINE | ID: mdl-38220043

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Formaldehyde , Genetic Risk Score , Humans , Genotype , Tissue Fixation/methods , DNA/genetics , Paraffin Embedding/methods
10.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Article En | MEDLINE | ID: mdl-38245754

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Genome-Wide Association Study , MicroRNAs , Humans , Aged , Genome-Wide Association Study/methods , Multiomics , Memory , Cognition , Polymorphism, Single Nucleotide/genetics
11.
Article En | MEDLINE | ID: mdl-38184734

Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05-1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry.

12.
medRxiv ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38076931

A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.

13.
medRxiv ; 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37965200

Introduction: A better understanding of the earliest stages of Alzheimer's disease (AD) could expedite the development or administration of treatments. Large population biobanks hold the promise to identify individuals at an elevated risk of AD and related dementias based on health registry information. Here, we establish the protocol for an observational clinical recall and biomarker study called TWINGEN with the aim to identify individuals at high risk of AD by assessing cognition, health and AD-related biomarkers. Suitable candidates were identified and invited to participate in the new study among Finnish biobank donors according to TWINGEN study criteria. Methods and analysis: A multi-center study (n=800) to obtain blood-based biomarkers, telephone-administered and web-based memory and cognitive parameters, questionnaire information on lifestyle, health and psychological factors, and accelerometer data for measures of physical activity, sedentary behavior and sleep. A sub-cohort are being asked to participate in an in-person neuropsychological assessment (n=200) and wear an Oura ring (n=50). All participants in the TWINGEN study have genome-wide genotyping data and up to 48 years of follow-up data from the population-based older Finnish Twin Cohort (FTC) study of the University of Helsinki. TWINGEN data will be transferred to Finnish Institute of Health and Welfare (THL) biobank and we aim to further to transfer it to the FinnGen study where it will be combined with health registry data for prediction of AD. Ethics and dissemination: This recall study consists of FTC/THL/FinnGen participants whose data were acquired in accordance with the Finnish Biobank Act. The recruitment protocols followed the biobank protocols approved by Finnish Medicines Agency. The TWINGEN study plan was approved by the Ethics Committee of Hospital District of Helsinki and Uusimaa (number 16831/2022). THL Biobank approved the research plan with the permission no: THLBB2022_83.

14.
Invest Ophthalmol Vis Sci ; 64(14): 33, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37988105

Purpose: Apolipoprotein E4 (APOE4), a known risk factor for Alzheimer's disease, has controversially been associated with reduced risk of primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD). Here, we sought to systematically quantify the associations of APOE haplotypes with age-related ocular diseases and to assess their scope and age-dependency. Methods: We included genetic and registry data from 412,171 Finnish individuals in the FinnGen study. Disease endpoints were defined using nationwide registries. APOE genotypes were directly genotyped using Illumina and Affymetrix arrays or imputed using a custom Finnish reference panel. We evaluated the disease associations of APOE genotypes containing ε2 (without ε4) and ε4 (without ε2) compared with the ε3ε3 genotype using logistic regressions stratified by age. Results: APOE ε4 enriched haplotypes were inversely associated with overall glaucoma (odds ratio [OR] = 0.95, 95% confidence interval [CI] = 0.92-0.99, P = 0.0047), and its subtypes POAG (OR = 0.95, P = 0.027), normal-tension glaucoma (OR = 0.87, P = 0.0058), and suspected glaucoma (OR = 0.95, P = 0.014). Individuals with the ε4 allele also had lower odds for AMD (OR = 0.80, 95% CI = 0.76-0.84, P < 0.001), seen both in dry and neovascular subgroups. A slight negative association was also detected in senile cataract, but this was not reproducible in age-group analyses. Conclusions: Our results support prior evidence of the inverse association of APOE ε4 with glaucoma, but the association was weaker than for AMD. We could not show an association with exfoliation glaucoma, supporting the hypothesis that APOE may be involved in regulating retinal ganglion cell degeneration rather than intraocular pressure.


Apolipoprotein E4 , Glaucoma, Open-Angle , Glaucoma , Macular Degeneration , Humans , Apolipoprotein E4/genetics , Eye , Glaucoma/genetics , Glaucoma, Open-Angle/genetics , Haplotypes , Macular Degeneration/genetics
15.
PLoS Genet ; 19(10): e1010982, 2023 Oct.
Article En | MEDLINE | ID: mdl-37871108

BACKGROUND: Preterm birth (<37 weeks of gestation) is a major cause of neonatal death and morbidity. Up to 40% of the variation in timing of birth results from genetic factors, mostly due to the maternal genome. METHODS: We conducted a genome-wide meta-analysis of gestational duration and spontaneous preterm birth in 68,732 and 98,370 European mothers, respectively. RESULTS: The meta-analysis detected 15 loci associated with gestational duration, and four loci associated with preterm birth. Seven of the associated loci were novel. The loci mapped to several biologically plausible genes, for example HAND2 whose expression was previously shown to decrease during gestation, associated with gestational duration, and GC (Vitamin D-binding protein), associated with preterm birth. Downstream in silico-analysis suggested regulatory roles as underlying mechanisms for the associated loci. LD score regression found birth weight measures as the most strongly correlated traits, highlighting the unique nature of spontaneous preterm birth phenotype. Tissue expression and colocalization analysis revealed reproductive tissues and immune cell types as the most relevant sites of action. CONCLUSION: We report novel genetic risk loci that associate with preterm birth or gestational duration, and reproduce findings from previous genome-wide association studies. Altogether, our findings provide new insight into the genetic background of preterm birth. Better characterization of the causal genetic mechanisms will be important to public health as it could suggest new strategies to treat and prevent preterm birth.


Premature Birth , Female , Infant, Newborn , Humans , Premature Birth/genetics , Genome-Wide Association Study/methods , Mothers , Phenotype , Birth Weight
16.
BMC Res Notes ; 16(1): 208, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697398

OBJECTIVE: To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). RESULTS: In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.


Heart Failure , Humans , Heart Failure/diagnosis , Electronic Health Records , Stroke Volume , Algorithms , Data Mining
17.
Sci Rep ; 13(1): 12641, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537264

Successful development of novel therapies requires that clinical trials are conducted in patient cohorts with the highest benefit-to-risk ratio. Population-based biobanks with comprehensive health and genetic data from large numbers of individuals hold promise to facilitate identification of trial participants, particularly when interventions need to start while symptoms are still mild, such as for Alzheimer's disease (AD). This study describes a process for clinical recall studies from FinnGen. We demonstrate the feasibility to systematically ascertain customized clinical data from FinnGen participants with ICD10 diagnosis of AD or mild cognitive disorder (MCD) in a single-center cross-sectional study testing blood-based biomarkers and cognitive functioning in-person, computer-based and remote. As a result, 19% (27/140) of a pre-specified FinnGen subcohort were successfully recalled and completed the study. Hospital records largely validated registry entries. For 8/12 MCD patients, other reasons than AD were identified as underlying diagnosis. Cognitive measures correlated across platforms, with highest consistencies for dementia screening (r = 0.818) and semantic fluency (r = 0.764), respectively, for in-person versus telephone-administered tests. Glial fibrillary acidic protein (GFAP) (p < 0.002) and phosphorylated-tau 181 (pTau-181) (p < 0.020) most reliably differentiated AD from MCD participants. We conclude that informative, customized clinical recall studies from FinnGen are feasible.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , tau Proteins , Mental Recall , Biomarkers , Amyloid beta-Peptides
18.
medRxiv ; 2023 Jul 18.
Article En | MEDLINE | ID: mdl-37502935

Background: While previous studies have reported associations of pericardial adipose tissue (PAT) with cardiovascular diseases such as atrial fibrillation and coronary artery disease, they have been limited in sample size or drawn from selected populations. Additionally, the genetic determinants of PAT remain largely unknown. We aimed to evaluate the association of PAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of PAT in a large population cohort. Methods: A deep learning model was trained to quantify PAT area from four-chamber magnetic resonance images in the UK Biobank using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. A genome-wide association study was performed, and a polygenic score (PGS) for PAT was examined in 453,733 independent FinnGen study participants. Results: A total of 44,725 UK Biobank participants (51.7% female, mean [SD] age 64.1 [7.7] years) were included. PAT was positively associated with male sex (ß = +0.76 SD in PAT), age (r = 0.15), body mass index (BMI; r = 0.47) and waist-to-hip ratio (r = 0.55) (P < 1×10-230). PAT was more elevated in prevalent heart failure (ß = +0.46 SD units) and type 2 diabetes (ß = +0.56) than in coronary artery disease (ß = +0.22) or AF (ß = +0.18). PAT was associated with incident heart failure (HR = 1.29 per +1 SD in PAT [95% CI 1.17-1.43]) and type 2 diabetes (HR = 1.63 [1.51-1.76]) during a mean 3.2 (±1.5) years of follow-up; the associations remained significant when controlling for BMI. We identified 5 novel genetic loci for PAT and implicated transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2 and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The PAT PGS was associated with T2D, heart failure, coronary artery disease and atrial fibrillation in FinnGen (ORs 1.03-1.06 per +1 SD in PGS, P < 2×10-10). Conclusions: PAT shares genetic determinants with abdominal adiposity and is an independent predictor of incident type 2 diabetes and heart failure.

19.
medRxiv ; 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37425837

Metabolites are small molecules that are useful for estimating disease risk and elucidating disease biology. Nevertheless, their causal effects on human diseases have not been evaluated comprehensively. We performed two-sample Mendelian randomization to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites with potential causal effects across multiple disease domains, including ascorbic acid 2-sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation through two distinct metabolic pathways and that N-methylpipecolate may mediate the causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study highlights the broad causal impact of plasma metabolites and widespread metabolic connections across diseases.

20.
Gastroenterology ; 165(4): 861-873, 2023 10.
Article En | MEDLINE | ID: mdl-37453564

BACKGROUND & AIMS: Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS: Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS: We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS: Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.


Intestinal Neoplasms , Neuroendocrine Tumors , Adult , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Mutation, Missense , Genome-Wide Association Study , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Receptors, G-Protein-Coupled/genetics , Kinesins/genetics
...